
FastTree: Computing Large Minimum-Evolution

Trees with Profiles instead of a Distance Matrix

by Morgan N. Price, Paramvir S. Dehal, and Adam P. Arkin

Supplementary Table 1 - Topological accuracy of tree-building

methods on simulated nucleotide alignments of 500 nu-

cleotides without gaps.

Guindon and Gascuel (2003) simulated 2,000 random trees with a maximum pairwise

divergence of roughly 0.4 or 1.0 substitutions/site and with significant, yet realis-

tic, deviations from the molecular clock. They generated alignments according to

the Kimura two-parameter model with a transition/transversion ratio of 2, without

gaps, and without varying evolutionary rates across sites (http://www.lirmm.fr/ guin-

don/simul/). We measured the performance of FastTree, BIONJ+dnadist, Neighbor,

and Clearcut ourselves. (Neighbor is the implementation of neighbor joining in the

phylip package.) The other results are from “Shortest triplet clustering: reconstruct-

ing large phylogenies using representative sets” (L. Vinh and A. von Haeseler, BMC

Bioinformatics 2005, 6:92).

Method Distances N=24 N=24 N=96

d ≈ 0.4 d ≈ 1.0 d ≈ 1.0

FastTree Jukes-Cantor 0.921 0.926 0.912

FastME Kimura – – 0.910

BIONJ dnadist (F84) 0.916 0.921 0.888

BIONJ Kimura – – 0.888

Neighbor dnadist (F84) 0.914 0.918 0.885

NJ Kimura – – 0.885

Clearcut dnadist (F84) 0.893 0.897 0.874

1



Supplementary Table 2 - Topological accuracy of tree-building

methods on simulated protein alignments with 10, 50, 250,

or 1,250 sequences and no gaps.

Method Distances N=10 N=50 N=250 N=1,250

PhyML JTT 0.768 0.797 0.837 0.827

FastTree log-corrected 0.752 0.800 0.841 0.827

FastME log-corrected 0.742 0.796 0.839 0.828

BIONJ log-corrected 0.752 0.797 0.817 0.788

BIONJ JTT 0.714 0.794 0.831 0.799

BIONJ JTT + Γ 0.564 0.624 0.782 0.766

QuickTree log-corrected 0.746 0.788 0.810 0.781

QuickTree %different 0.692 0.708 0.726 0.703

Clearcut log-corrected 0.702 0.774 0.802 0.777

FastTree No NNI – – 0.765 0.740

FastTree Exhaustive, no NNI – – 0.764 0.738

BIONJ uncorrected – – 0.764 0.738

Supplementary Table 3 - Relative log-likelihoods of trees

inferred by variants of FastTree for genuine protein align-

ments of 500 sequences.

Average Lower Lik.

Method Log-Lik. than FastTree

FastTree, Default settings 0.0 –

FastTree, Balanced joins -106.4 77%

FastTree, No NNI -402.3 100%

FastTree, Exhaustive, No NNI -428.5 100%

BIONJ, uncorrected dist. -514.1 >99%

2



Supplementary Figure 1: Relative performance

of FastTree and BIONJ for fast-evolving or non-

clock-like simulations

To test the relative accuracy of FastTree and BIONJ across a range of tree shapes, we

subdivided the simulations by their maximum evolutionary divergence (left panels) or

by their deviation from the molecular clock (right panels). Because these distributions

are skewed, we split them into bins of equal size. On the x axis, each horizontal arrow

shows the range of 1/6th of the simulations. The y axis shows the accuracy advantage

of FastTree over BIONJ for that group of simulations, and each vertical error bar shows

a 95%-confidence interval from a t test. The protein simulations (top panels) are with

gaps (as in Table 1) and the nucleotide simulations (bottom panels) are from Desper

and Gascuel (2002) with accelerated evolutionary rates (maximum pairwise divergence

≈ 1, as in Supplementary Table 1). To compute the divergence for these (unrooted)

trees, we used the midpoint root and we measured the maximum distance from the

midpoint. We quantified the deviation from clockness as the dispersion of distances

from the midpoint (max/min - 1). We ran BIONJ with log-corrected distances for

proteins and with dnadist (F84) distances for nucleotides.

0 1 2 3 4 5

0.
00

0.
02

0.
04

250 Taxa (proteins)

Maximum Distance to Midpoint Root

F
as

tT
re

e 
−

 B
IO

N
J

0 1 2 3 4 5 6 7

0.
00

0.
02

0.
04

250 Taxa (proteins)

Deviation from Clockness (Max/min − 1)

F
as

tT
re

e 
−

 B
IO

N
J

0.4 0.5 0.6 0.7 0.8

0.
00

0.
02

0.
04

96 Taxa (nt)

Maximum Distance to Midpoint Root

F
as

tT
re

e 
−

 B
IO

N
J

0.5 1.0 1.5 2.0 2.5 3.0

0.
00

0.
02

0.
04

96 Taxa (nt)

Deviation from Clockness (Max/min − 1)

F
as

tT
re

e 
−

 B
IO

N
J

3



Supplementary Note 1: Technical Details of Fast-

Tree

Distances between Nodes – No Gaps

Here we show that, if there are no gaps, then the neighbor-joining phase of
FastTree, with exhaustive search for the best join, gives identical results to
BIONJ with uncorrected distances.

When we join two nodes i and j, we store a profile or a frequency vector at
each position l for the new parent node ij as the (weighted) average

~Pl(ij) = λ~Pl(i) + (1 − λ)~Pl(j)

where λ is the weight (as in BIONJ) or λ = 1/2. Because the profile distances
∆(i, j) are linear,

∆(ij, k) = λ∆(i, k) + (1 − λ)∆(j, k)

We first consider unweighted joins. To compute distances between joined nodes
and other nodes, neighbor joining uses the formula

du(ij, k) =
du(i, k) + du(j, k) − du(i, j)

2

and FastTree uses profiles and up-distances

du(ij, k) = ∆(ij, k) − u(ij) − u(k)

u(ij) ≡
∆(i, j)

2

and u(l) ≡ 0 for leaves. For two leaves i and j, ∆(i, j) = du(i, j), so this gives
the correct distance between leaves. Assume the distances are correct for all
nodes so far and consider the next join ij:

du(ij, k) =
du(i, k) + du(j, k) − du(i, j)

2

=
∆(i, k) − u(i) − u(k) + ∆(j, k) − u(j) − u(k) − ∆(i, j) + u(i) + u(j)

2

=
∆(i, k) + ∆(j, k)

2
−

∆(i, j)

2
− u(k)

= ∆(ij, k) − u(ij) − u(k)

which shows that our distances are correct for du(ij, k) and, by induction, for
all nodes.

For weighted joins, a similar argument shows that

u(ij) ≡ λ(u(i) + du(i, ij)) + (1 − λ)(u(j) + du(j, ij))

4



du(i, ij) ≡
du(i, j) + r(i) − r(j)

2

where r(i) is the “out-distance,” gives the same result as the formula for
BIONJ

du(ij, k) = λ(du(i, k) − du(i, ij)) + (1 − λ)(du(j, k) − du(j, ij))

For BIONJ, we also need to compute the “variances” that are used to com-
puted the weights of the joins. The variance values for pairs of leaves are the
same as the distance values, or V (l1, l2) = du(l1, l2), and the BIONJ formula
for variances of internal nodes is

V (ij, k) = λV (i, k) + (1 − λ)V (j, k) − λ(1 − λ)V (i, j)

where λ is the weight of i in ij. These variance values can be computed
from profile-distances by using a “variance correction” ν(i) analogous to the
up-distances. Let ν(i) ≡ 0 for leaves and

V (i, j) = ∆(i, j) − ν(i) − ν(j)

ν(ij) ≡ λν(i) + (1 − λ)ν(j) + λ(1 − λ)V (i, j)

Given these variances, BIONJ weights the join of i, j so as to minimize the
variance of the distance estimates for the new node ij, using the formula

λ =
1

2
+

∑

k 6=i,j

(V (j, k) − V (i, k))

2(n − 2)V (i, j)

FastTree computes the numerator with

∑

k 6=i,j

(V (j, k) − V (i, k)) =
∑

k 6=i,j

(∆(j, k) − ∆(i, k) − ν(j) + ν(i) + ν(k) − ν(k))

= (n − 2)(ν(i) − ν(j)) +
∑

k 6=i,j

∆(j, k) −
∑

k 6=i,j

∆(i, k)

where n is the number of active nodes before the join takes place. FastTree
computes this in O(La) time by using the total profile to compute sums of
∆(i, k), as explained in the next section.

Out-distances

For either neighbor joining with unweighted joins or BIONJ, we need to compute
the out-distances r(i) so that we can compute the neighbor-joining criterion

du(i, j) − r(i) − r(j)

5



where

r(i) ≡

∑

j 6=i

du(i, j)

n − 2

In the absence of gaps, the average profile distance between a node and all other
nodes can be inferred from the total profile T :

∑

j 6=i

du(i, j) =
∑

j 6=i

(∆(i, j) − u(i) − u(j))

=
∑

j

∆(i, j) − ∆(i, i) − (n − 1)u(i) −
∑

j 6=i

u(j)

= n∆(i, T ) − ∆(i, i) − (n − 1)u(i) + u(i) −
∑

j

u(j)

which can be computed in O(La) time if we store the total profile T and the
total of all the up-distances.

Handling Gaps

Now, consider what happens if there are gaps. The profiles’ frequency vectors
do not include gaps, but the profile distance is weighted at each position:

∆(A,B) ≡

L∑

l=1

∆l(A,B)wl(A)wl(B)

L∑

l=1

wl(A)wl(B)

∆l(A,B) ≡
∑

α

∑

β

fAl(α)fBl(β)D(α, β)

where D is the dissimilarity matrix on characters, fAl(α) is the frequency
of character α in the profile of A at position l, ∆l is the distance between the
profiles at position l, and wl(A) is the proportion of non-gaps in the profile of
A at position l. The proportion of non-gaps for an internal node is just the
weighted average of the values for its children.

In the presence of gaps, the previous formula for the out-distance is not a
good approximation because highly gapped sequences contribute little to the
total profile. Instead, we need to take the weights of the comparisons into
account. Let T − i be the total profile with the contribution from i removed.
Then

∑

i6=j

∆(i, j) ≈ (n − 1)∆(i, T − i)

6



∆(i, T − i) =

∑

j 6=i

L∑

l=1

∆l(i, j)wl(i)wl(j)

∑

j 6=i

L∑

l=1

wl(i)wl(j)

∆(i, T ) =

∑

j

L∑

l=1

∆l(i, j)wl(i)wl(j)

∑

j

L∑

l=1

wl(i)wl(j)

which leads to a formula for ∆(i, T − i) in terms of ∆(i, T ) and ∆(i, i) and the
total weights of those comparisons. In practice, this gives a good approximation
for the out-distances in the presence of gaps (data not shown).

Gaps also complicate the interpretation of the “variances” used for weighted
joins. In principle, the variances should be divided by the number of non-gap
positions in the comparison, as distances that are computed from more positions
are more reliable. However, if we do that, the formula for variances given in the
previous section becomes unreliable (data not shown). Instead, we implicitly
weight less-gapped sequences more highly because the less-gapped member of a
join contributes more strongly to the profile.

To compute the weight for each join in the presence of gaps, we need to
estimate

∑
k 6=i,j ∆(i, k). To do this, split the profile-distance into its numerator

and its weight or denominator

∆(i, j) =
N(i, j)

w(i, j)

Then

∑

k 6=i,j

∆(i, k) ≈
∑

k 6=i,j

∆(i, k)
(n − 2) · w(i, k)∑

k 6=i,j w(i, k)

=
(n − 2) · N(i, T − i − j)

w(i, T − i − j)

where T − i− j represents the total profile with i and j removed, and the terms
can be computed with

N(i, T − i − j) = n · N(i, T ) − N(i, i) − N(i, j)

w(i, T − i − j) = n · w(i, T ) − w(i, i) − w(i, j)

7



Restrictions on the Top-hits Heuristic

To ensure accuracy, FastTree sorts the sequences before computing the top-hits
lists, and it restricts the top-hits heuristic to “close enough” sequences. FastTree
sorts the sequences by how many gaps they contain and by their out-distances.
Fewer gaps is better, as this makes the distances more reliable, and a smaller
out-distance is better, as this implies that the sequence is more likely to be close
to other nodes.

Before it estimates the top-hits of B from the top-hits of A, FastTree requires
that du(A,B) ≤ 0.75 ·du(A,H2m), where H2m is A’s 2m-th best hit. (Note that
we are using uncorrected distances here, not the neighbor-joining criterion, even
though the top-hits lists are sorted by the neighbor-joining criterion.) This re-
striction applies to the initial computation of top hits but not to the “refreshes”
that are used to update the top hits during neighbor joining. The factor of
0.75 represents a compromise between speed and accuracy. If we used a fac-
tor of 0.5, then the top-hits list should include the true top hit because of the
triangle inequality du(A,B) ≤ du(A,C) + du(C,B). On the other hand, for a
perfectly balanced tree with clock-like evolution, we expect the distance of hit
m to be proportionate to log

2
m and the distance of hit 2m to proportionate to

1 + log
2
m, so with a factor of log

2
m/(1 + log

2
m) we would expect O(m) close

neighbors of A.
FastTree also requires that A and B have similar patterns of gaps. This

is to avoid cases where the sequences overlap in only a few positions, so that
they might be identical or nearly so (for the positions considered) even though
they have very different top-hits lists. Specifically, we require that the total
number of non-gap positions in the comparison between A and B must be at
least 1− du/2 times the number of non-gap positions in B or at least 1− 2du/3
times the average number of shared positions between A and its top 2m hits,
where du is the maximum distance allowed between A and B.

Refreshing the Top-hits Lists

If the top-hit list has shrunk too much or is too old, then FastTree does a
“refresh” – it recomputes the top-hit lists for the new joined node and updates
the top-hit lists of the new node’s top hits. A top-hit list is too short if it has
less than 0.8m entries, where 0.8 is a tuning parameter and m is the size of the
top-hit lists. FastTree also records a top-hits “age” of each join, and it sets the
age of a new node to one plus the maximum of its childrens’ ages. If the age is
above 1 + log2(m) then it does a refresh.

To refresh, we compare the new node AB to all n−1 other active nodes, and
we save the top m hits. Then, we compare the close neighbors of AB (the top
m hits) to the top 2m hits of AB, and we update the close neighbors’ top-hit
lists by merging. The age of every updated top-hits list is set to zero. A single
refresh takes O(nLa+m2La) = O(NLa) time and ensures that the top-hit lists
of O(m =

√
N) other nodes reach size m and are up to date. Thus, there are

O(
√

N) refreshes and they take a total of O(N
√

NLa) time. We also note that

8



if the top hit list has size equal to the remaining number of active nodes (e.g.
because n ≤ m), then the top-hit lists are exhaustive. At that point there is
only O(m2La = NLa) work remaining.

Compact Representation of Profiles

To save memory, FastTree represents sequences as characters (1 byte per posi-
tion) rather than profiles (4a + 4 bytes per position, because it stores a single-
precision floating-point value for each eigenfrequency plus an overall weight).
Similarly, when FastTree computes a profile that is constant at a position (or
all-gaps, with weight=0), it stores a character and a weight, but not the eigen-
frequency vector. This requires an additional overhead of 1 byte per position
for varying positions, but still yields a large savings in space requirements, es-
pecially for amino acid alignments (a = 20).

Supplementary Note 2 – Technical Details of Test-

ing FastTree

To generate simulated protein alignments, we used the 310 COGs with at least
1,000 distinct sequences in MicrobesOnline. Given an actual family and align-
ment, we removed duplicate sequences, we selected the desired number of fam-
ily members at random, and we removed alignment positions that were over
25% gaps. For alignments of up to 1,250 sequences, we inferred a maximum-
likelihood phylogeny using PhyML 3.0 with the JTT model and no rate vari-
ation across sites (Guindon and Gascuel 2003). Given the topology, we in-
ferred the evolutionary rate of each site using proml from the phylip pack-
age, gamma-distributed rates (8 categories), and a coefficient of variation of 1
(http://evolution.genetics.washington.edu/phylip.htm). The inferred rate cat-
egories were biased downwards (the average rate was less than one), so we
normalized the rates so that their average was 1. We then used the branch
lengths (from proml) and the evolutionary rate of each site to simulate an un-
gapped alignment with Rose (Stoye et al., 1998). Finally, we re-introduced the
gaps that were in the genuine alignment so that the simulated alignment had
the same pattern of gaps. Thus, both the topology and the placement of gaps
should be realistic.

For simulations of 5,000 sequences, the above approach was not computa-
tionally feasible. (Even for 1,250 sequences, many of the PhyML jobs had not
completed after a week.) Instead, we inferred the topology and branch lengths
using FastTree and we assigned the evolutionary rate of each site randomly
among 16 categories. These categories approximated a gamma distribution
with a coefficient of variation of 0.7. For comparison, the coefficient of varia-
tion of the inferred rates for the genuine alignments of 10-250 sequences was
typically 0.6-0.8. Also, before selecting sequences from the genuine alignment,
we made a 99% non-redundant subset of sequences with CD-HIT (W. Li et al.,

9



Bioinformatics 18:77-82). This avoided inferring a tree with many very-short
branch lengths and hence simulating large numbers of non-unique sequences

To compare the inferred trees to the true trees, we used perl scripts or
phylip’s treedist. So that treedist would run on trees of 5,000 leaves, we modi-
fied treedist.c to set maxgrp=100,000. (Without this change, it crashes on large
trees.) Similarly, to run consense on resamples of the COG2814 and PF00005
trees, we modified consense.c to set maxgrp=1,000,000. This initializes its
hashtable, which it uses to look up splits, to roughly 30-fold larger than the
standard setting, and should speed it up.

To test tree inference on large genuine alignments, we used FastTree 1.0.0,
BIONJ from http://www.lirmm.fr/˜w3ifa/MAAS/BIONJ/BIONJ.c, QuickTree
1.1, Clearcut 1.0.8, RapidNJ 1.0.0, FastME 1.1, PhyML 3.0, RAxML VI version
1.0, and protdist and seqboot from version 3.65 of the phylip package. We also
tried to run quick-join 1.0.10 (T.Mailund et al., BMC Bioinformatics 2006)
and scoredist (Sonnhammer and Hollich 2005) on COG2814, but these required
too much memory. Executables were obtained from the authors’ web sites or
were compiled with gcc version 3.4.6 and the -O2 optimization setting. When
using protdist to estimate maximum likelihood distances, we replaced negative
distances (from non-overlapping sequences) and distances above 3 substitutions
per site with 3, as in scoredist. This improved the likelihood of the trees inferred
by BIONJ from protdist distances.

To test the accuracy of the local bootstrap, we used FastTree 1.0.4.

10


